If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+14X-115=0
a = 1; b = 14; c = -115;
Δ = b2-4ac
Δ = 142-4·1·(-115)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{41}}{2*1}=\frac{-14-4\sqrt{41}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{41}}{2*1}=\frac{-14+4\sqrt{41}}{2} $
| 4(x-2)=-16+5x | | 10^-6n+5=55 | | -4=8-0.6x | | 247.87=7(00.9m+21.70+0.30(21.70)) | | -7x-14=-5x-4 | | 3/2=4/3+2/3m-5 | | -2x=5(x=12)+17 | | C+7=25-2c | | -7/4n-9=-7 | | 8x+2=5(3x+9) | | k/3+6=-4 | | k3+6=-4 | | 2(x-2)-6x=-16 | | 14=4m+2 | | 3x+39=45 | | 3(-2q+5)=-18 | | c/4-8=10 | | 5=w/2+2 | | 2/v-5=3/5 | | 5/20=x/20 | | 10x^2-0.4x+3.2=0 | | -15=3(v+5)+7v | | 3x+6+7x-22=27 | | 8(w-3)-2w=-12 | | 2=e-9.2 | | 7/5x=84/8 | | 5x=-5x-40 | | Y=10x+32 | | -18=3/4v=3 | | 5x+63=93 | | -3(x)=9 | | -3(4x+3)=27 |